Python如何画P-R曲线
Python生成P-R图需要安装第三方库matplotlib、numpy及sklearn。
推荐学习《Python教程》。
P-R曲线的生成方法:
根据学习器的预测结果对样本进行排序,排在前面的是学习器认为最可能是正例的样本,排在最后的是最不可能是正例的样本,按此顺序逐个将样本作为正例预测,则每次可以计算出当前的查全率、查准率,以查全率为横轴、查准率为纵轴做图,得到的查准率-查全率曲线即为P-R曲线。
也就是说对每个样本预测其为正例的概率,然后将所有样本按预测的概率进行排序,然后依次将排序后的样本做为正例进行预测,从而得到每次预测的查全率与查准率。这个依次将样本做为正例的过程实际上就是逐步降低样本为正例的概率的域值,通过降低域值,更多的样本会被预测为正例,从而会提高查全率,相对的查准率可能降低,而随着后面负样本的增加,查全率提高缓慢甚至没有提升,精度降低会更快。
sklearn的计算过程与定义相反是按概率从小到大递增的顺序来计算查准率与查全率的,并且分别为查准率和查全率添加了1和0。
#coding:utf-8 importmatplotlib importnumpyasnp importmatplotlib.pyplotasplt fromsklearn.metricsimportprecision_recall_curve fromsklearn.utils.fixesimportsignature plt.figure("P-RCurve") plt.title('Precision/RecallCurve') plt.xlabel('Recall') plt.ylabel('Precision') #y_true为样本实际的类别,y_scores为样本为正例的概率 y_true=np.array([1,1,1,1,1,0,1,1,0,1,1,1,0,0,0,0,1,0,0,0]) y_scores=np.array([0.9,0.75,0.86,0.47,0.55,0.56,0.74,0.62,0.5,0.86,0.8,0.47,0.44,0.67,0.43,0.4,0.52,0.4,0.35,0.1]) precision,recall,thresholds=precision_recall_curve(y_true,y_scores) #print(precision) #print(recall) #print(thresholds) plt.plot(recall,precision) plt.show()原文来自:https://www.py.cn
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容