我很喜欢用python,用python处理数据是家常便饭,从事的工作涉及nlp,算法,推荐,数据挖掘,数据清洗,数据量级从几十k到几T
不等,我来说说吧
百万级别数据是小数据,python处理起来不成问题,python处理数据还是有些问题的
Python处理大数据的劣势:
1.python线程有gil,通俗说就是多线程的时候只能在一个核上跑,浪费了多核服务器。在一种常见的场景下是要命的:并发单元之间有巨
大的数据共享或者共用(例如大dict),多进程会导致内存吃紧,多线程则解决不了数据共享的问题,单独的写一个进程之间负责维护读
写这个数据不仅效率不高而且麻烦
2.python执行效率不高,在处理大数据的时候,效率不高,这是真的,pypy(一个jit的python解释器,可以理解成脚本语言加速执行的
东西)能够提高很大的速度,但是pypy不支持很多python经典的包,例如numpy(顺便给pypy做做广告,土豪可以捐赠一下PyPy –
Call for donations)
3.绝大部分的大公司,用java处理大数据不管是环境也好,积累也好,都会好很多。
推荐学习《python教程》
Python处理数据的优势(不是处理大数据):
1.异常快捷的开发速度,代码量巨少 2.丰富的数据处理包,不管正则也好,html解析啦,xml解析啦,用起来非常方便 3.内部类型使用成本巨低,不需要额外怎么操作(java,c++用个map都很费劲) 4.公司中,很大量的数据处理工作工作是不需要面对非常大的数据的 5.巨大的数据不是语言所能解决的,需要处理数据的框架(hadoop,mpi。。。。)虽然小众,但是python还是有处理大数据的框 架的,或者一些框架也支持python 6.编码问题处理起来太太太方便了原文来自:https://www.py.cn
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容