pickle模块,json模块
(1)把变量从内存中变成可存储或传输的过程,称之为序列化。Python中叫pickling,其他语言中也被称为serialization,marshalling,flattening等,都是相同的意思。
(2)序列化之后,就可以把序列化后的内容(序列化后的内容是一个Bytes)写入磁盘,或者通过网络传输到别的机器上。
(3)把变量内容从序列化的对象重新读到内存里,称之为反序列化,即unpickling。
(4)Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用pickle保存那些不重要的数据,不能成功地反序列化也没关系。
把一个对象序列化并写入文件,有两种方法:
(1)pickle.dumps( )方法: 把任意对象序列化成一个bytes,然后,通过一定方式把这个bytes写入文件。
importpickle d=dict(name='bob',age=23,score=98) print(pickle.dumps(d))
(2)pickle.dump( )方法: 直接把对象序列化后写入一个file-like Object
importpickle d=dict(name='shirley',age=23,score=98) f=open('dump.txt','wb')#因为序列化之后是bytes,所以是wb pickle.dump(d,f) f.close() #通过pickle.dump()将对象保存到文件中,通过下面语句可以查看写入的序列化内容 f=open("dump.txt",'rb')#rb print(f.read())
pickle.dumps( )和pickle.dump( )的区别:就在于中间过程我们是否还需要再做一些操作。
前者我们还要再做一些操作;后者不需要我们再进行任何操作。
同序列化一样,当要把对象从磁盘读到内存时,有两种方法:
(1)pickle.loads( ):可以先把内容读到一个bytes,然后用pickle.loads( )方法反序列化出对象
(2)pickle.load( ):直接用pickle.load( )方法从一个file-like Object中直接反序列化出对象
importpickle f=open('dump.txt','rb') s=pickle.load(f) f.close() print("反序列化后的对象s:",s)
运行结果: 反序列化后的对象s: {'score': 98, 'age': 23, 'name': 'shirley'}
注意:这个反序列化后的对象和原来的变量d是完全不相干的,它们只是内容相同而已。
JSON
Python内置的json模块可以实现从Python对象到JSON格式的转换
(1)JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。
(2)JSON是标准格式,比XML更快,而且可以直接在Web页面中读取。
(3)JSON表示的对象就是标准的JavaScript语言的对象
JSON和Python内置的数据类型对应如下:
JSON类型——Python类型
{ }—————-dict
[ ]—————-list
"string"———str
1234.56——–int或float
true/false——-True/False
null—————None
注: 把Python对象转换成JSON格式时,只要是上面表格中列举的Python类型即可,其他类型,例如变量,就会报错。
把Python对象转换成JSON格式:json.dumps( )方法,json.dump( )方法(可以直接把JSON写入一个file-like Object)
要把JSON反序列化为Python对象:json.loads( )方法,json.load( )方法 (前者把JSON的字符串反序列化,后者从file-like Object 中读取字符串并反序列化)
实例:把Python对象变成一个JSON
importjson d=dict(name='shirley',age=23,score=98) print(json.dumps(d)) print(isinstance(json.dumps(d),str))#判断序列化后的内容类型 print(type(json.dumps(d)))#判断序列化后的内容类型
运行结果:
json.dumps(d):{"name":"shirley","age":23,"score":98} True <class'str'>
JSON字符串反序列化:
importjson json_str='{"age":20,"score":88,"name":"Bob"}' print(json.loads(json_str)) print(type(json.loads(json_str)))
注:由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的字符串str与JSON的字符串之间转换。
JSON进阶
由于Python的字典dict对象在上面表格列举的Python类型中,所以字典dict可以直接序列化为JSON的{ },不过,很多时候,更喜欢用class表示对象,比如定义Student类,然后序列化:
importjson classStudent(object): def__init__(self,name,age,score): self.name=name self.age=age self.score=score s=Student('Nancy',24,89) print(json.dumps(s))
运行结果:
Traceback(mostrecentcalllast): …………………………………… TypeError:<main.Studentobjectat0x0000000000844208>isnotJSONserializable
错误的原因是:
Student对象不是一个可序列化为JSON的对象。 如果class的实例对象都无法序列化为JSON,这肯定不合理。(我的理解是class的实例对象s是一个变量,不在上面列举的Python类型中,所以报错)
前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps( )方法不知道如何将Student实例变为一个JSON的{ }对象。
解决办法是:定制JSON序列化
####对可选参数default进行设置,把任意class的实例变为dict
print(json.dumps(s,default=lambdaobj:obj.__dict__))
通常类class的实例都有一个dict属性,它就是一个dict,用来存储实例变量(注意:是实例变量,即不同实例,该属性存储的变量不同,互不影响)。也有少数例外,比如定义了slots
同理,把JSON反序列化为一个Student对象实例,loads( )方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例
classStudent(object): def__init__(self,name,age,score): self.name=name self.age=age self.score=score importjson defdict2student(d): returnStudent(d['name'],d['age'],d['score']) json_str='{"age":20,"score":88,"name":"Bob"}' print(json.loads(json_str)) print(json.loads(json_str,object_hook=dict2student))
运行结果:
{'age':20,'score':88,'name':'Bob'} <main.Studentobjectat0x00000000007345C0>
打印出的是反序列化的实例对象。
小结
Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。
json模块的dumps( )和loads( )函数是定义得非常好的接口的典范。使用时只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。
原文来自:https://www.py.cn
暂无评论内容