Python与R语言的共同特点
1.Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法
2.Python和R两门语言有多平台适应性,linux、window都可以使用,并且代码可移植性强
3.Python和R比较贴近MATLAB以及minitab等常用的数学工具
python学习网,大量的免费python学习视频,欢迎在线学习!
其实R也有很多自己特性,下面是它最显著的几个特性:
1、就是命令模式。Python虽然也支持命令模式,但是相对来说,更偏向于流程控制语句,也就是可以写一堆语句,然后执行。R本身基
本上不需要用到流程控制(当然,它也支持流程控制)。
2、就是交互性。这样是命令模式的一个特点,敲回车,出结果。但是又不像SPSS那种用鼠标扎针的交互方式(在键盘上运指如飞逼格瞬
间提升很多……好莱坞大片里面,高手黑客都是不用鼠标的,当然,这样很合理,SSH或者Telent到远程服务器上,怎么鼠标?)
3、也是R语言特点,统计学特性……好吧R语言与其他所有计算机语言本质区别,就是它是一门统计学家发明的语言(其他
语言,基本上都是码农发明的,当然,也有数学家发明的),那么就有很多神奇特点。
比如:赋值的时候,不用等号(=),用的是指向(<-),带来的问题就是要写 a < -5
这种语句,就需要 a < (-5) 这样写。
Python与R语言的区别
数据结构方面,由于是从科学计算的角度出发,R中的数据结构非常的简单,主要包括向量(一维)、多维数组(二维时为矩阵)、列表(非结
构化数据)、数据框(结构化数据)。而 Python 则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组(可读写、有序)、
元组(只读、有序)、集合(唯一、无序)、字典(Key-Value)等等。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过
groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。
Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文
原文来自:https://www.py.cn
暂无评论内容